Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612489

RESUMO

The gut-brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank's Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially converted to KYNA, which was promptly released into the extracellular milieu. De novo production of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria (107 to 109 CFU/mL) and with incubation time (1-3 h). KYNA neosynthesis was blocked by two selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the mammalian large neutral amino acid transporter, and KYNA production was not affected by the presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these results reveal substantive qualitative differences between bacterial and mammalian KP metabolism.


Assuntos
Limosilactobacillus reuteri , Probióticos , Animais , Cinurenina , Ácido Cinurênico , Aminoácidos , Mamíferos
3.
Aging Cell ; 22(7): e13849, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37078472

RESUMO

Decline in neuromuscular function with aging is known to be a major determinant of disability and all-cause mortality in late life. Despite the importance of the problem, the neurobiology of age-associated muscle weakness is poorly understood. In a previous report, we performed untargeted metabolomics on frail older adults and discovered prominent alteration in the kynurenine pathway, the major route of dietary tryptophan degradation that produces neurotoxic intermediate metabolites. We also showed that neurotoxic kynurenine pathway metabolites are correlated with increased frailty score. For the present study, we sought to further examine the neurobiology of these neurotoxic intermediates by utilizing a mouse model that has a deletion of the quinolinate phosphoribosyltransferase (QPRT) gene, a rate-limiting step of the kynurenine pathway. QPRT-/- mice have elevated neurotoxic quinolinic acid level in the nervous system throughout their lifespan. We found that QPRT-/- mice have accelerated declines in neuromuscular function in an age- and sex-specific manner compared to control strains. In addition, the QPRT-/- mice show premature signs of frailty and body composition changes that are typical for metabolic syndrome. Our findings suggest that the kynurenine pathway may play an important role in frailty and age-associated muscle weakness.


Assuntos
Fragilidade , Cinurenina , Masculino , Feminino , Camundongos , Animais , Cinurenina/metabolismo , Fragilidade/genética , Fenótipo , Envelhecimento , Debilidade Muscular
4.
Neuropsychopharmacology ; 48(11): 1594-1601, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37118058

RESUMO

Cognitive impairments predict poor functional outcomes in people with schizophrenia. These impairments may be causally related to increased levels of kynurenic acid (KYNA), a major metabolic product of tryptophan (TRYP). In the brain, KYNA acts as an antagonist of the of α7-nicotinic acetylcholine and NMDA receptors, both of which are involved in cognitive processes. To examine whether KYNA plays a role in the pathophysiology of schizophrenia, we compared the acute effects of a single oral dose of TRYP (6 g) in 32 healthy controls (HC) and 37 people with either schizophrenia (Sz), schizoaffective or schizophreniform disorder, in a placebo-controlled, randomized crossover study. We examined plasma levels of KYNA and its precursor kynurenine; selected cognitive measures from the MATRICS Consensus Cognitive Battery; and resting cerebral blood flow (CBF) using arterial spin labeling imaging. In both cohorts, the TRYP challenge produced significant, time-dependent elevations in plasma kynurenine and KYNA. The resting CBF signal (averaged across all gray matter) was affected differentially, such that TRYP was associated with higher CBF in HC, but not in participants with a Sz-related disorder. While TRYP did not significantly impair cognitive test performance, there was a trend for TRYP to worsen visuospatial memory task performance in HC. Our results demonstrate that oral TRYP challenge substantially increases plasma levels of kynurenine and KYNA in both groups, but exerts differential group effects on CBF. Future studies are required to investigate the mechanisms underlying these CBF findings, and to evaluate the impact of KYNA fluctuations on brain function and behavior. (Clinicaltrials.gov: NCT02067975).


Assuntos
Cinurenina , Esquizofrenia , Ratos , Animais , Humanos , Triptofano , Ácido Cinurênico/metabolismo , Estudos Cross-Over , Ratos Wistar , Cognição , Circulação Cerebrovascular
5.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015151

RESUMO

The pivotal tryptophan (TRP) metabolite kynurenine is converted to several neuroactive compounds, including kynurenic acid (KYNA), which is elevated in the brain and cerebrospinal fluid of people with schizophrenia (SZ) and may contribute to cognitive abnormalities in patients. A small proportion of TRP is metabolized to serotonin and further to 5-hydroxyindoleacetic acid (5-HIAA). Notably, KP metabolism is readily affected by immune stimulation. Here, we assessed the acute effects of an oral TRP challenge (6 g) on peripheral concentrations of kynurenine, KYNA and 5-HIAA, as well as the cytokines interferon-γ, TNF-α and interleukin-6, in 22 participants with SZ and 16 healthy controls (HCs) using a double-blind, placebo-controlled, crossover design. TRP raised the levels of kynurenine, KYNA and 5-HIAA in a time-dependent manner, causing >20-fold, >130-fold and 1.5-fold increases in kynurenine, KYNA and 5-HIAA concentrations, respectively, after 240 min. According to multivariate analyses, neither baseline levels nor the stimulating effects of TRP differed between participants with SZ and HC. Basal cytokine levels did not vary between groups, and remained unaffected by TRP. Although unlikely to be useful diagnostically, measurements of circulating metabolites following an acute TRP challenge may be informative for assessing the in vivo efficacy of drugs that modulate the neosynthesis of KYNA and other products of TRP degradation.

6.
Eur J Neurosci ; 54(6): 5968-5981, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363411

RESUMO

In rodents, a single injection of lipopolysaccharide (LPS) during gestation causes chemical and functional abnormalities in the offspring. These effects may involve changes in the kynurenine pathway (KP) of tryptophan degradation and may provide insights into the pathophysiology of psychiatric diseases. Using CD1 mice, we examined acute and long-term effects of prenatal LPS treatment on the levels of kynurenine and its neuroactive downstream products kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and quinolinic acid. To this end, LPS (100 µg/kg, i.p.) was administered on gestational day 15, and KP metabolites were measured 4 and 24 h later or in adulthood. After 4 h, kynurenine, KYNA and 3-HK levels were elevated in the fetal brain, 3-HK and KYNA levels were increased in the maternal plasma, and kynurenine was increased in the maternal brain, whereas no changes were seen in the placenta. These effects were less prominent after 24 h, and prenatal LPS did not affect the basal levels of KP metabolites in the forebrain of adult animals. In addition, a second LPS injection (1 mg/kg) in adulthood in the offspring of prenatally saline- and LPS-treated mice caused a similar elevation in 3-HK levels in both groups after 24 h, but the effect was significantly more pronounced in male mice. Thus, acute immune activation during pregnancy has only short-lasting effects on KP metabolism and does not cause cerebral KP metabolites to be disproportionally affected by a second immune challenge in adulthood. However, prenatal KYNA elevations still contribute to functional abnormalities in the offspring.


Assuntos
Cinurenina , Lipopolissacarídeos , Animais , Feminino , Ácido Cinurênico , Masculino , Camundongos , Placenta , Gravidez , Ácido Quinolínico
8.
Dev Neurosci ; 41(1-2): 102-111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31117076

RESUMO

Several lines of evidence support the hypothesis that abnormally elevated brain levels of kynurenic acid (KYNA), a metabolite of the kynurenine pathway (KP) of tryptophan degradation, play a pathophysiologically significant role in schizophrenia and other major neurodevelopmental disorders. Studies in experimental animal models suggest that KP impairments in these diseases may originate already in utero since prenatal administration of KYNA's bioprecursor, kynurenine, leads to biochemical and structural abnormalities as well as distinct cognitive impairments in adulthood. As KP metabolism during pregnancy is still insufficiently understood, we designed this study to examine the de novo synthesis of KYNA and 3-hydroxykynurenine (3-HK), an alternative biologically active product of kynurenine degradation, in tissue slices obtained from pregnant mice on gestational day (GD) 18. Fetal brain and liver, placenta, and maternal brain and liver were collected, and the tissues were incubated in vitroin the absence or presence of micromolar concentrations of kynurenine. KYNA and 3-HK were measured in the extracellular milieu. Basal and newly produced KYNA was detected in all cases. As KYNA formation exceeded 3-HK production by 2-3 orders of magnitude in the placenta and maternal brain, and as very little 3-HK neosynthesis was detectable in fetal brain tissue, detailed follow-up experiments focused on KYNA only. The fetal brain produced 3-4 times more KYNA than the maternal brain and placenta, though less than the maternal and fetal liver. No significant differences were observed when using tissues obtained on GD 14 and GD 18. Pharmacological inhibition of KYNA's main biosynthetic enzymes, kynurenine aminotransferase (KAT) I and KAT II, revealed qualitative and quantitative differences between the tissues, with a preferential role of KAT I in the fetal and maternal brain and of KAT II in the fetal and maternal liver. Findings using tissue slices from KAT II knockout mice confirmed these conclusions. Together, these results clarify the dynamics of KP metabolism during pregnancy and provide the basis for the conceptualization of interventions aimed at manipulating cerebral KP function in the prenatal period.


Assuntos
Encéfalo/metabolismo , Ácido Cinurênico/metabolismo , Fígado/metabolismo , Placenta/metabolismo , Animais , Feminino , Feto , Cinurenina/análogos & derivados , Cinurenina/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos/métodos , Gravidez , Transaminases/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-30267854

RESUMO

Maternal immune activation (MIA) with the viral mimic poly I:C provides an established rodent model for studying schizophrenia (SZ) and other human neurodevelopmental disorders. Postnatal infections are additional risk factors in SZ and may cumulatively contribute to the emergence of pathophysiology. Underlying mechanisms may involve metabolites of the kynurenine pathway (KP) of tryptophan degradation, which is readily induced by inflammatory stimuli. Here we compared the expression of selected cytokines and KP enzymes, and the levels of selected KP metabolites, in the brain of MIA offspring following a second, acute immune challenge with lipopolysaccharides (LPS) on postnatal day (PND) 35 (adolescence) or PND 60 (early adulthood). Assessed in adolescence, MIA did not alter the expression of pro-inflammatory cytokines (except TNF-α) or KP metabolite levels compared to controls, but substantially reduced the expression of the anti-inflammatory cytokines IL-4 and IL-10 and influenced the expression of two of the four KP enzymes examined (IDO1 and TDO2). LPS treatment caused distinct changes in the expression of pro- and anti-inflammatory cytokines, as well as KP enzymes in MIA offspring, but had no effect on KP metabolites compared to control rats. Several of these effects were blunted in MIA offspring receiving LPS on PND 60. Notably, LPS caused a significant reduction in brain kynurenine levels in these animals. Of relevance for SZ-related hypotheses, these results indicate that MIA leads to an increasingly defective, rather than an overactive, immune regulation of cerebral KP metabolism during the postnatal period.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/imunologia , Citocinas/metabolismo , Inflamação/metabolismo , Cinurenina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica/imunologia , Lipopolissacarídeos , Transtornos do Neurodesenvolvimento/imunologia , Poli I-C , Gravidez , Ratos Wistar
10.
Sensors (Basel) ; 18(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355989

RESUMO

A major trend in biomedical engineering is the development of reliable, self-contained point-of-care (POC) devices for diagnostics and in-field assays. The new generation of such platforms increasingly addresses the clinical and environmental needs. Moreover, they are becoming more and more integrated with everyday objects, such as smartphones, and their spread among unskilled common people, has the power to improve the quality of life, both in the developed world and in low-resource settings. The future success of these tools will depend on the integration of the relevant key enabling technologies on an industrial scale (microfluidics with microelectronics, highly sensitive detection methods and low-cost materials for easy-to-use tools). Here, recent advances and perspectives will be reviewed across the large spectrum of their applications.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Biossensoriais , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Qualidade de Vida
11.
J Psychopharmacol ; 32(11): 1223-1232, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30354938

RESUMO

BACKGROUND: Several studies suggest a pathophysiologically relevant association between increased brain levels of the neuroinhibitory tryptophan metabolite kynurenic acid and cognitive dysfunctions in people with schizophrenia. Elevated kynurenic acid in schizophrenia may be secondary to a genetic alteration of kynurenine 3-monooxygenase, a pivotal enzyme in the kynurenine pathway of tryptophan degradation. In rats, prenatal exposure to kynurenine, the direct bioprecursor of kynurenic acid, induces cognitive impairments reminiscent of schizophrenia in adulthood, suggesting a developmental dimension to the link between kynurenic acid and schizophrenia. AIM: The purpose of this study was to explore the possible impact of the maternal genotype on kynurenine pathway metabolism. METHODS: We exposed pregnant wild-type ( Kmo+/+ ) and heterozygous ( Kmo+/-) mice to kynurenine (10 mg/day) during the last week of gestation and determined the levels of kynurenic acid and two other neuroactive kynurenine pathway metabolites, 3-hydroxykynurenine and quinolinic acid, in fetal brain and placenta on embryonic day 17/18. RESULTS: Maternal kynurenine treatment raised kynurenic acid levels significantly more in the brain of heterozygous offspring of Kmo+/- than in the brain of Kmo+/+ offspring. Conversely, 3-hydroxykynurenine and quinolinic acid levels in the fetal brain tended to be lower in heterozygous animals derived from kynurenine-treated Kmo+/- mice than in corresponding Kmo+/+ offspring. Genotype-related effects on the placenta were qualitatively similar but less pronounced. Kynurenine treatment also caused a preferential elevation in cerebral kynurenic acid levels in Kmo+/- compared to Kmo+/+ dams. CONCLUSIONS: The disproportionate kynurenic acid increase in the brain of Kmo+/- animals indicates that the maternal Kmo genotype may play a key role in the pathophysiology of schizophrenia.


Assuntos
Encéfalo/metabolismo , Ácido Cinurênico/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Esquizofrenia/fisiopatologia , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Feminino , Genótipo , Cinurenina/administração & dosagem , Cinurenina/análogos & derivados , Cinurenina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/metabolismo , Gravidez , Ácido Quinolínico/metabolismo , Esquizofrenia/genética
12.
Trends Neurosci ; 41(8): 491-493, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30053952

RESUMO

Kynurenines, the major degradative products of the essential amino acid tryptophan, may play critical roles in the pathophysiology of depressive disorders. In 2014, Agudelo and colleagues reported that exercise indirectly modulates the metabolism of kynurenines in skeletal muscle, which in turn influences the brain and enhances resilience to depression.


Assuntos
Depressão , Cinurenina , Transtorno Depressivo , Exercício Físico , Humanos , Músculo Esquelético
13.
Neuropsychopharmacology ; 43(8): 1706-1711, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29728648

RESUMO

Frontal glutamatergic synapses are thought to be critical for adaptive, long-term stress responses. Prefrontal cortices, including the anterior cingulate cortex (ACC) contribute to stress perception and regulation, and are involved in top-down regulation of peripheral glucocorticoid and inflammatory responses to stress. Levels of kynurenic acid (KYNA) in saliva increase in response to psychological stress, and this stress-induced effect may be abnormal in people with schizophrenia. Here we test the hypothesis that ACC glutamatergic functioning may contribute to the stress-induced salivary KYNA response in schizophrenia. In 56 patients with schizophrenia and 58 healthy controls, our results confirm that levels of KYNA in saliva increase following psychological stress. The magnitude of the effect correlated negatively with proton magnetic resonance spectroscopy (MRS) glutamate + glutamine (r = -.31, p = .017) and glutamate (r = -0.27, p = .047) levels in the ACC in patients but not in the controls (all p ≥ .45). Although, a causal relationship cannot be ascertained in this cross-sectional study, these findings suggest a potentially meaningful link between central glutamate levels and kynurenine pathway response to stress in individuals with schizophrenia.


Assuntos
Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Ácido Cinurênico/metabolismo , Saliva/metabolismo , Esquizofrenia/metabolismo , Estresse Psicológico/metabolismo , Adulto , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/metabolismo , Esquizofrenia/diagnóstico por imagem , Estresse Psicológico/diagnóstico por imagem
14.
Neuropsychopharmacology ; 43(8): 1675-1680, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29520060

RESUMO

Abnormalities in the kynurenine pathway (KP) of tryptophan degradation, leading to the dysfunction of neuroactive KP metabolites in the brain, have been implicated in the pathophysiology of schizophrenia (SZ). One plausible mechanism involves dysregulation of various pro-inflammatory cytokines associated with the disease, which affect indoleamine-2,3-dioxygenase (IDO), a key enzyme for tryptophan to kynurenine conversion. In order to test this hypothesis directly, we measured plasma levels of the major KP metabolites kynurenine and kynurenic acid (KYNA), as well as four major cytokines, in a sample of 106 SZ patients and 104 control participants. In contrast to the replicable findings of elevation of KYNA in the central nervous system in SZ, plasma levels of KYNA were significantly lower in SZ compared to controls (p = .004). Kynurenine levels were significantly correlated with levels of interferon-γ (p < .001), which is involved in the regulation of IDO, in both patients and controls. However, although patients had higher levels of interleukin-6 (IL-6) compared to controls (p = .012), IL-6 levels were not correlated with kynurenine or KYNA, and did not explain group differences in KYNA. Based on the lack of evidence that pro-inflammatory cytokines were significantly related to the KP abnormality in SZ despite an adequate sample size, further studies must consider alternative hypotheses to identify the origins of the KP abnormalities in SZ.


Assuntos
Citocinas/sangue , Ácido Cinurênico/sangue , Cinurenina/sangue , Transtornos Psicóticos/sangue , Esquizofrenia/sangue , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Dev Neurosci ; 39(6): 519-528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080891

RESUMO

The kynurenine pathway (KP), the major catabolic route of tryptophan in mammals, contains several neuroactive metabolites, including kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK). KP metabolism, and especially the fate of KYNA, during pregnancy is poorly understood, yet it may play a significant role in the development of psychiatric disorders later in life. The present study was designed to investigate the prenatal features of KP metabolism in vivo, with special focus on KYNA. To this end, pregnant CD-1 mice were treated systemically with kynurenine (100 mg/kg), KYNA (10 mg/kg), or saline on embryonic day 18. As expected, administration of either kynurenine or KYNA increased KYNA levels in the maternal plasma and placenta. Maternal kynurenine treatment also raised kynurenine levels in the fetal plasma and brain, demonstrating the ability of this pivotal KP metabolite to cross the placenta and increase the levels of both KYNA and 3-HK in the fetal brain. In contrast, maternal administration of KYNA caused only a small, nonsignificant elevation in KYNA levels in fetal plasma and brain. Complementary experiments using an ex vivo placental perfusion procedure confirmed the significant transplacental transfer of kynurenine and demonstrated that only a very small fraction of maternal kynurenine is converted to KYNA in the placenta and released into the fetal compartment under physiological conditions. Jointly, these results help to clarify the contributions of the maternal circulation and the placenta to fetal KYNA in the late prenatal period.


Assuntos
Encéfalo/efeitos dos fármacos , Ácido Cinurênico/farmacologia , Cinurenina/metabolismo , Placenta/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Feminino , Cinurenina/análogos & derivados , Cinurenina/farmacologia , Camundongos , Placenta/metabolismo , Gravidez , Triptofano/metabolismo
16.
Neuropharmacology ; 112(Pt B): 275-285, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26944732

RESUMO

The kynurenine pathway (KP) of tryptophan degradation contains several neuroactive metabolites that may influence brain function in health and disease. Mounting focus has been dedicated to investigating the role of these metabolites during neurodevelopment and elucidating their involvement in the pathophysiology of psychiatric disorders with a developmental component, such as schizophrenia. In this review, we describe the changes in KP metabolism in the brain from gestation until adulthood and illustrate how environmental and genetic factors affect the KP during development. With a particular focus on kynurenic acid, the antagonist of α7 nicotinic acetylcholine (α7nACh) and N-methyl-d-aspartate (NMDA) receptors, both implicated in modulating brain development, we review animal models designed to ascertain the role of perinatal KP elevation on long-lasting biochemical, neuropathological, and behavioral deficits later in life. We present new data demonstrating that combining perinatal choline-supplementation, to potentially increase activation of α7nACh receptors during development, with embryonic kynurenine manipulation is effective in attenuating cognitive impairments in adult rat offspring. With these findings in mind, we conclude the review by discussing the advancement of therapeutic interventions that would target not only symptoms, but potentially the root cause of central nervous system diseases that manifest from a perinatal KP insult. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.


Assuntos
Comportamento/fisiologia , Encéfalo , Cinurenina/metabolismo , Redes e Vias Metabólicas/fisiologia , Transtornos do Neurodesenvolvimento , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/terapia
17.
Biochim Biophys Acta ; 1860(11 Pt A): 2345-2354, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27392942

RESUMO

BACKGROUND: In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. METHODS: Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. RESULTS AND CONCLUSIONS: Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Triptofano Oxigenase/metabolismo , Animais , Encéfalo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Inflamação/etiologia , Inflamação/metabolismo , Cinurenina/sangue , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Triptofano Oxigenase/genética
18.
J Psychiatry Neurosci ; 41(6): 386-394, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27070351

RESUMO

BACKGROUND: Neuroinflammatory processes are increasingly believed to participate in the pathophysiology of a number of major psychiatric diseases, including depression. Immune activation stimulates the conversion of the amino acid tryptophan to kynurenine, leading to the formation of neuroactive metabolites, such as quinolinic acid and kynurenic acid. These compounds affect glutamatergic neurotransmission, which plays a prominent role in depressive pathology. Increased tryptophan degradation along the kynurenine pathway (KP) has been proposed to contribute to disease etiology. METHODS: We used postmortem brain tissue from the ventrolateral prefrontal cortex (VLPFC) to assess tissue levels of tryptophan and KP metabolites, the expression of several KP enzymes and a series of cytokines as well as tissue pathology, including microglial activation. Tissue samples came from nonpsychiatric controls (n = 36) and individuals with depressive disorder not otherwise specified (DD-NOS, n = 45) who died of natural causes, homicide, accident, or suicide. RESULTS: We found a reduction in the enzymatic conversion of tryptophan to kynurenine, determined using the kynurenine:tryptophan ratio, and reduced messenger RNA expression of the enzymes indoleamine-2,3-dioxygenase 1 and 2 and tryptophan-2,3-dioxygenase in depressed individuals irrespective of the cause of death. These findings correlated with reductions in the expression of several cytokines, including interferon-γ and tumour necrosis factor-α. Notably, quinolinic acid levels were also lower in depressed individuals than controls. LIMITATIONS: Information on the use of antidepressants and other psychotropic medications was insufficient for statistical comparisons. CONCLUSION: Contrary to expectations, the present results indicate that depression, in the absence of medical illness or an overt inflammatory process, is associated with compromised, rather than increased, KP metabolism in the VLPFC.


Assuntos
Citocinas/metabolismo , Transtorno Depressivo/metabolismo , Cinurenina/metabolismo , Córtex Pré-Frontal/metabolismo , Adulto , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Reação em Cadeia da Polimerase , Córtex Pré-Frontal/patologia , RNA Mensageiro/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(19): 5435-40, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114543

RESUMO

Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.


Assuntos
Cinurenina/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Triptofano Oxigenase/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Drosophila , Doenças Neurodegenerativas/patologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
20.
Dev Neurosci ; 38(6): 458-468, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28214871

RESUMO

Stressful events during pregnancy adversely affect brain development and may increase the risk of psychiatric disorders later in life. Early changes in the kynurenine (KYN) pathway (KP) of tryptophan (TRP) degradation, which contains several neuroactive metabolites, including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN), may constitute a molecular link between prenatal stress and delayed pathological consequences. To begin testing this hypothesis experimentally, we examined the effects of a 2-h restraint stress on KP metabolism in pregnant FVB/N mice on gestational day 17. TRP, KYN, KYNA, 3-HK, and QUIN levels were measured in maternal and fetal plasma and brain, as well as in the placenta, immediately after stress termination and 2 h later. In the same animals, we determined the activity of TRP 2,3-dioxygenase (TDO) in the maternal liver and in the placenta. Compared to unstressed controls, mostly transient changes in KP metabolism were observed in all of the tissues examined. Specifically, stress caused significant elevations of KYNA levels in the maternal plasma, placenta, and fetal brain, and also resulted in increased levels of TRP and KYN in the placenta, fetal plasma, and fetal brain. In contrast, 3-HK and QUIN levels remained unchanged from control values in all tissues at any time point. In the maternal liver, TDO activity was increased 2 h after stress cessation. Taken together, these findings indicate that an acute stress during the late gestational period preferentially affects the KYNA branch of KP metabolism in the fetal brain. Possible long-term consequences for postnatal brain development and pathology remain to be examined.


Assuntos
Ácido Cinurênico/metabolismo , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Psicológico/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Feto , Camundongos , Gravidez , Restrição Física , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA